On Bounding the Difference of the Maximum Degree and the Clique Number

نویسندگان

  • Oliver Schaudt
  • Vera Weil
چکیده

For every k ∈ N0, we consider graphs in which for any induced subgraph, ∆ ≤ ω−1+k holds, where ∆ is the maximum degree and ω is the maximum clique number of the subgraph. We give a finite forbidden induced subgraph characterization for every k. As an application, we find some results on the chromatic number χ of a graph. B. Reed stated the conjecture that for every graph, χ ≤ ⌈ ∆+ω+1 2 ⌉ holds. Since this inequality is fulfilled by graphs in which ∆ ≤ ω + 2 holds, our results provide a hereditary graph class for which the conjecture holds.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On bounding the difference between the maximum degree and the chromatic number by a constant

For every k ∈ N0, we consider graphs G where for every induced subgraph H of G, ∆(H) ≤ χ(H) − 1 + k holds, where ∆(H) is the maximum degree and χ(H) is the chromatic number of the subgraph H . Let us call this family of graphs Υk. We give a finite forbidden induced subgraph characterization of Υk for every k. We compare these results with those given in On bounding the difference between the ma...

متن کامل

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers

The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...

متن کامل

Intersection graphs associated with semigroup acts

The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...

متن کامل

On ‎c‎omputing the general Narumi-Katayama index of some ‎graphs

‎The Narumi-Katayama index was the first topological index defined‎ ‎by the product of some graph theoretical quantities‎. ‎Let $G$ be a ‎simple graph with vertex set $V = {v_1,ldots‎, ‎v_n }$ and $d(v)$ be‎ ‎the degree of vertex $v$ in the graph $G$‎. ‎The Narumi-Katayama ‎index is defined as $NK(G) = prod_{vin V}d(v)$‎. ‎In this paper,‎ ‎the Narumi-Katayama index is generalized using a $n$-ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015