On Bounding the Difference of the Maximum Degree and the Clique Number
نویسندگان
چکیده
For every k ∈ N0, we consider graphs in which for any induced subgraph, ∆ ≤ ω−1+k holds, where ∆ is the maximum degree and ω is the maximum clique number of the subgraph. We give a finite forbidden induced subgraph characterization for every k. As an application, we find some results on the chromatic number χ of a graph. B. Reed stated the conjecture that for every graph, χ ≤ ⌈ ∆+ω+1 2 ⌉ holds. Since this inequality is fulfilled by graphs in which ∆ ≤ ω + 2 holds, our results provide a hereditary graph class for which the conjecture holds.
منابع مشابه
On bounding the difference between the maximum degree and the chromatic number by a constant
For every k ∈ N0, we consider graphs G where for every induced subgraph H of G, ∆(H) ≤ χ(H) − 1 + k holds, where ∆(H) is the maximum degree and χ(H) is the chromatic number of the subgraph H . Let us call this family of graphs Υk. We give a finite forbidden induced subgraph characterization of Υk for every k. We compare these results with those given in On bounding the difference between the ma...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملOn computing the general Narumi-Katayama index of some graphs
The Narumi-Katayama index was the first topological index defined by the product of some graph theoretical quantities. Let $G$ be a simple graph with vertex set $V = {v_1,ldots, v_n }$ and $d(v)$ be the degree of vertex $v$ in the graph $G$. The Narumi-Katayama index is defined as $NK(G) = prod_{vin V}d(v)$. In this paper, the Narumi-Katayama index is generalized using a $n$-ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Graphs and Combinatorics
دوره 31 شماره
صفحات -
تاریخ انتشار 2015